大家谈谈学习ansys的经验与感受

水幽寒 发表于 2006-8-17 12:15:12 | 显示全部楼层 | 阅读模式
首发一贴希望起到抛砖引玉的作用!
     ansys中分为  前处理/prep   求解器/solu  后处理/post1等,对于初学者来讲,前处理也就是建立模型是比较难的过程,但是用ansys 做分析的时候,我个人认为后处理要比前两个模块复杂得多,如果没有一定工程经验和有限元的知识的话,你对计算出来的结果根本就无法判断,更谈不上对工程的指导意义了。所以学好有限元、力学等是必要的!
     下面仅就我个人学习ansys的过程谈谈学习的感受!
      我当是学习的时候由于时间比较紧,只做照着书做了一个示例,就开始试着进行实际项目的操作了。刚开始是用gui操作,的确吃了不少的苦头,比如当时不知道位置选择这个命令,想选实体单元中的某个面,就一遍遍的用鼠标点选,累的头昏眼花,现在想来也真是可笑,不过想想那也是摸索者一个不可或缺的过程。
       在闲下来的时候就找到与课题相关的一些命令流来读,不懂的去查书或者帮助文件,这样比较有目的性,能够事半功倍,刚开始的确有读天书的感觉,但慢慢的随着对命令流的理解就建立了信心,可以举一反三,触类旁通了。这样周而复始。现在,每天我还从网上下些命令流,去读,然后在后面做些注释保存起来,以备以后查用,这样不但丰富了自己的资料库,而且掌握了大量的知识。就是以后碰到生僻的项目,也可直接从资料库中调出模板,一挥而就!!!

评分

参与人数 2堡币 +8 收起 理由
yanjinyong + 3
独自等待 + 5

查看全部评分

精彩评论倒序浏览

5.7万查看88评论

五朵金花... 发表于 2013-11-30 23:41:55
      大四上学期用ansys做桥面铺装实验,接触的ansys,自我感觉要是自学的话,非常的头大,还好有辅导老师,不过呢,学习ansys这事,还得自己上手才行。
      自我感觉最难得就是建模了,尤其是对特别大的模型,要建立很多节点,分很多单元,要是一点点的在界面上输入,真的不敢想象要砸进去多少时间,在老师的指导下,我很快的学习了用UltraEdit编写文件,这样的话,效率确实提高了不少。
      还有,学习一定要用心。
举报 回复
水幽寒 发表于 2006-8-21 11:43:44
声明:转自 中国CAE联盟  作者:redouble
与大家共同学习下

使用Ansys软件建模的经验与技巧
1.始终注意保持使用一致的单位制;
2求解前运行allsel命令
求解前运行allsel命令。要不然,某些已经划分网格的实体而没有被选择,那么加在实体模型上加的荷载可能会没有传到nodes or elements上去;
3网格划分问题
牢记《建模与分网指南》上有关建模的忠告。网格划分影响模型是否可用,网格划分影响计算结果的可接受程度;
自适应网格划分(ADAPT)前必须查自适应网格划分可用单元,在ansys中能够自适应网格划分的单元是有限的。
网格划分完成后,必须检查网格质量!权衡计算时间和计算精度的可接受程度,必要时应该refine网格
4 实体建模布尔运算
应用实体建模以及布尔运算(加、减、贴、交)的优势解决建立复杂模型时的困难;但是,没有把握时布尔运算将难以保证成功!
5 计算结果的可信度
一般来说,复杂有限元计算必须通过多人,多次,多种通用有限元软件计算核对,互相检验,相互一致时才有比较可靠的计算结果。协同工作时必须对自己输入数据高度负责,并且小组成员之间保持良好的沟通;有限元分析不是搞什么“英雄主义”,而需要多方面的质量保证措施。
6了解最终所需要的成果
建立模型之前,应该充分了解最终要求提交什么样式的成果,这样能形成良好的网格,早期良好的建模规划对于后期成果整理有很大的帮助;
7 撰写分析文档
文档与分析过程力求保持同步,有利于小组成员之间的沟通和模型的检验和查证;
8 熟悉命令
对没有把握的命令应该先用简单模型熟悉之,千万不能抱有“撞大运”的想法;
9 多种单元共节点
不同单元使用共同节点时注意不同单元节点自由度匹配问题导致计算结果的正确与否(《建模与分网指南》P 8 )
三维梁单元和壳单元的节点自由度数一致,但是应该注意到三维梁单元的转动自由度和 壳单元的转动自由度的含义不一样。壳的ROTZ不是真实的自由度,它与平面内旋转刚度相联系,在局部坐标中壳的单元刚度矩阵ROTZ对应的项为零,对此不能将梁与壳单元仅仅有一个节点相连,例外的是当shell43 or shell63(两者都有keyopt(3)=2)的Allman旋转刚度被激活时。
  Solid65 单元和 shell63 单元相连,相应平动自由度的节点力会传到实体块单元上,但是shell63单元的转动自由度的节点唯一则不会传到相连的 solid65单元上。
10 查找文献资料确定混凝土的材料参数输入( Tb, concr, , , )
11 预测内存和磁盘空间
大型复杂模型(例如10万个节点,非线性问题,多工况问题,1000步以上的瞬态分析等等)求解之前预测求解所需要的求解时间、内存和磁盘空间,使分析尽在掌握之中;
12 收敛问题
  影响收敛(不收敛,或者收敛缓慢)的原因很多,《非线性分析指南》一书上有很多关于避免发生收敛问题的建议;
  对于以下参数,可以试一试这些参数对收敛速度以及结果精度的影响
neqit = 6~25?
  加载荷载步大小 = ?
  接触单元的实常数 = ? 例如接触刚度的大小取值必须权衡计算结果精度(穿透大小)和收敛问题( 收敛时间 )两者的可接受程度,需要经验值或者试算;
13 启动重分析

14 两个相贯的薄壁圆筒建模,壳单元没有公共节点
Element Connectivity Error, 8-Node Curved Shell Elements
In this image, the red stiffener was intended to be welded to the purple pipe. Note that the elements of the red stiffener do not match up with those on the pipe. There is no connection, and the meshing was done independently. This is due to a geometric modeling error by the user (me). There are superimposed curved lines where the interface is located. There should have been a shared line for the connection to have worked. I found this only because of careful examination of the model -- I had already run a stress analysis.
What to do about these error concerns? Read and think. Share and listen to ideas and concerns with others. Review your own work, and the work of your co-workers. (Recently an experienced co-worker who does not even do FEA work asked me if I had eliminated the added mass of water in pipes when evaluating shipping loads on a product. I hadn't. Eliminating the added mass got rid of a high-stress problem. These errors are very easy to make.) Be friendly. Communicate with other departments. Have a check list and design reviews. Never use FEA blindly, or believe the results of an analysis without some critical review. Accept a critical review without taking it personally. Develop a good understanding of the intent of the design codes that regulate your work. Consult an expert when it is appropriate. Pay attention to the ethics and standards of your professional association. Choose your employer wisely. (Some of these things you were supposed to have learned in Kindergarten, but life isn't always that simple.)
解决方法:通过volumn建模形成相贯线,该方法建模使面相交处共线,xmesh后有公共nodes
15 选择集的应用
为了利用选择集cm / xsel的强大功能,可以合理定义线,面的实常数real属性,为了选择操作方便而赋予更多的单元实常数号,材料号

18 UPGEOM 和 MPCHG 的应用
! UPGEOM更新几何形状
!a.rst为计算结果文件名,最后一个为目录
!这两个参数应根据你的计算情况定
UPGEOM,1,LAST,LAST,NEW,rst,F:\729\
! MPCHG弹性模量恢复为真值
esel,s,mat,,3
mpchg,4,all

• You might be tempted to try to deactivate or reactivate elements by changing their material properties [ MPCHG ] ( Main Menu>Preprocessor>Material Props>Change Mat Num ).
However, you must proceed cautiously if you attempt such a procedure. The safeguards and restrictions that affect "killed" elements will not apply to elements that have their material properties changed in SOLUTION. (Element forces will not be automatically zeroed out;nor will strains, mass, specific heat, etc.) Many problems could result from careless use of MPCHG . For instance, if you reduce an element's stiffness to almost zero, but retain its mass, it could result in a singularity if subjected to acceleration or inertial effects.
One application of MPCHG would be in modeling construction sequences in which the strain history of a "born" element is maintained. Using MPCHG in such cases will enable you to capture the initial strain experienced by elements as they are fitted into the displaced nodal configuration
19 Ansys 中的坐标系统,使用各种坐标系时应该明白在各处理器中输入输出会受到那些坐标系的影响
整体和局部坐标系CSYS---用于定位几何形状参数的空间位置
显示坐标系DSYS---用于几何形状参数的列表和显示
节点坐标系---定义节点自由度方向和节点结果数据的方法。输入数据时受到节点坐标系影响的有:约束自由度(方程),力,主(从)自由度;在/POST26中在节点坐标系下输出文件和显示的数据结果有:自由度解,节点荷载,反作用荷载;
Forces are defined in the nodal coordinate system. The positive directions of structural forces and moments are along and about the positive nodal axis directions. The node and the degree of freedom label corresponding to the force must be selected [ NSEL , DOFSEL ].
单元坐标系---每个单元都有自己的坐标系,单元坐标系用于确定材料特性主轴,加面压力和和单元结果数据(如应力和应变)的输出方向;ANSYS规定了单元坐标系的缺省方向;许多单元都有keyopts可用于修改单元坐标系的缺省方向;对于面和体单元而言,可以用ESYS命令将单元坐标系的方向调整到已定义的局部坐标系;
结果坐标系RSYS---用来列表、显示或者在/POST1中将节点和单元结果转换到特定的坐标系中。在/POST1中结果数据换算到结果坐标系(RSYS)下记录。定义路径时,可以用系列命令*GET, ACTSYS, ACTIVE,CSYS $ RSYS, ACTSYS使结果坐标系与激活的坐标系(用于定义路径)相匹配
求解坐标系---大多数模型叠加技术(PSD,CQC,SRSS)是在求解坐标系中进行的,使用RSYS,SOLU命令来避免在结果坐标系中发生变换,使结果数据保持在求解坐标系中。
20 Ansys 5.7通过函数定义边界条件
利用函数可以很简单方便地定义复杂边界条件和载荷(将边界条件当作函数处理(即方程))。该特性是5.6 中介绍的表格化边界条件的扩展功能。用户可以创建大量函数并存储起来,以便于将来使用。

5.6的表格化边界条件(Tabular boundary conditions)
Tabular boundary conditions ( VALUE = % tabname %) are available only for structural (UX, UY, UZ, ROTX, ROTY, ROTZ) and temperature degree of freedom (TEMP) labels and are valid only in static ( ANTYPE ,STATIC) and full transient ( ANTYPE ,TRANS) analyses.
滞回曲线——位移加载
*DIM,dis,TABLE,9,1,,TIME, ,
DIS(1,0) = 0,1,2,3,4,5,6,7,8
DIS(1,1) = 0,3,0,-3,0,4,0,-4,0
D,22, , %DIS% , , , ,UZ, , , , ,
ansys 5.6 help files------- 2.6.3. Applying Loads Using TABLE Type Array Parameters
优点:
 将复杂载荷和边界条件定义成基本变量和因变量的连续或非连续方程。
 提供创建和运用函数的极易操作的GUI 界面。
应用 :
 该特性适用于所有ANSYS家族产品。
 该特性适用于ANSYS程序的所有过程,支持TIME, TEMP, X, Y, Z, VELOCITY和PRESSURE等基本变量。
21 automatic time stepping
For nonlinear problems, automatic time stepping determines the amount of load increment between substeps
举报 回复
沧海学生小... 发表于 2006-8-23 19:19:11
转自okok.org

1。我记得有一句话说的大概意思是,在使用软件的过程中所犯错误大部分都是对原理不够清楚。
2。要学好ANSYS等有限元软件,我觉得有限元的知识是必不可少的,越多越好,否则是用不好,或者说是出了错误也不知道错在哪里。就像你用PKPM一样,特别是TAT,基于杆系的一些知识和规范知识如果你没掌握,也不能用好。说到底,软件也是一些必我们聪明的人开发出来的,“”不能神化其作用“”,照样需要我们在使用过程中去学习体会掌握判断。
3。学习有限元是不好学,可以先从基本的学起,入门级教材。还要对线性代数,矩阵论,数值计算等有所了解。更高级的数学我也没学过,有限元也是需要的。
4。有限元不是个傻瓜级别的自动软件,计算结果的精确度取决于你的知识,经验来判别。只是会操作并不行。
5。有限元是可以应用于复杂结构的分析,复杂节点分析,国内有些复杂建筑是用来复核分析,也有用来模拟施工过程分析的。
6。PKPM等做通常的结构够用了。前后处理都方便,效率高。
7。学习有限元,有一个捷径,就是结构力学中的矩阵位移法,有些相似,你只要抓住“节点位移”这个核心就容易一些,不是一朝一夕就能学好,学无止境,大家互相帮助学习。
8。其实我觉得学好了有限元过程中的一系列问题,对于回头去学基于杆系原则的东西,容易多了,做设计也好,理解规范也好,上升了一个层次。普通知识基于杆系,达到内力的层次(我觉得这种近似掩盖了结构的一些本来的真实),而有限元达到应力应变层次,对于认识结构的本来面目又进了一步。
9。有些时候看有些高级点的知识是要费脑一些。举个例子吧,我看爱德华.L.威尔逊的那本动力与静力分析,刚开始看跟没看一样,我是看了两遍才入门的,因为里面的一些新成果多,而且是个简化了很多知识点的书,得看其它的书籍,才能看懂,即便是这样,有些知识以我目前的资料也不能查到更详细的资料,因为有些成果2001的都有。学习贵在坚持。
10。顺便给你推荐一本比较初级的“有限元分析的概念和应用(R.D.库克)”,一位搞有限元的大牛的书,写得比较容易懂。老外的书好学些。
11。另外就是:ANSYS这类软件强调了通用性,要复杂一些,不妨也可以试一试其它针对于土木工程结构方面的有限元分析软件。
举报 回复
水幽寒 发表于 2006-9-3 23:24:57
学习ansys,假设说手里只有软件,没有任何的中文图书(其实很多的中文图书
就是完全的翻译ansys自带的HELP,而且有些翻译的质量实在是不敢恭维,这里仅说利用ansys自带的HELP).那么我建议以下的这种学习方式,假设你已经有了基本的有限元知识.简易教程中用的是d版ansys9.0sp1.

1,养成良好的习惯,每一次的工作都建一个文件夹,并取一个文件名,
参看图1.AVI。或者参看Basic Guide | Chapter 1. Getting Started with ANSYS | 1.2. Building a Model

2,首先完成help里面的tutorials,里面有结构学的,电磁学的,
热学的,还有流体学的等近十类指南,选择其中的一种或者是两种来做,比如说
你是做结构学的,当然就选择结构学的啦,一步步按着指导做下去,以此来熟悉anays的图形操作(GUI).

学ansys还是要熟悉GUI操作的,每运行一次GUI操作会在ansys的工作目录里面生成一个.LOG文件,适当处理就会得到一个命令流文件,然后可以导入该命令流,就相当于重复了上面的GUI操作(再加入适当的APDL控制语句,就可以以小做大,这是后话,这里先不提)。
3,看Basic Analysis Guide,建模,加负载,计算,通用后处理,时间后处理的基本用法这里都有了。
4,熟悉了基本的操作之后,以后就要看一点命令流了,毕竟命令流效率高,速度快,而且最主要的,ansys高手都在用.Verification Manual,里面给出了264个例子,这是我们的好帮手,一定要熟悉,当然还是要选择自己熟悉的来做。比如说我是做动力学分析的,就选择一个动力的例子来做。这些我觉得是非常非常有用的。
在这里你要熟悉里面的命令是什么意思,就得一条条查查了,好在里面的许多命令都是英文的缩写,大多可以猜出是什么意思来,但许多还是要自己查的。
5,等你做完了几个例子之后,ansys就差不多入门了。那么这个时候,你要应该考虑自己的问题了。怎么建模型,当然建模型,可以考虑在别的软件中建出来,然后导入之,不过,这种导入一般会出现点问题,这里介绍apdl参数化建模。 建模型和划分网格这部分可参看,Modeling and Meshing Guide,本人觉得你想用哪部分就把哪部分好好看看,个人深得网格划分还是挺讲究技巧的。apdl可参看APDL Programmer's Guide,建议好好看看,第三章参数应用和第四章宏语言。至于宏语言,可以参看[url=http://www.ansys.net/]www.ansys.net[/url]中,里面有二三百个外国人写得比较经典的宏,很多很有借鉴意义的,但是都是英文的,要有耐心看才好.
6,看完了这些,等到你基本上确定了运用哪些单元做研究,就应该把你要用的单元描述好好看一看。如我要用shell163,solid164,就多看看这两个。要仔细看,他的输入描述,如选择什么算法,输入一些什么量了,他的输出描述,能输出些什么量来,能做什么研究。图8.avi.这里要说的是有时候,在后处理中,单元表要好好利用一下,有时候利用单元表结合path,surface可以做出一些挺让人有成就感的情来。好好看看etable,path,surface,注意到map到path和surface上面的是可以运算的,加,减,乘,甚至积分,好好看看这部分吧。(Basic Guide | Chapter 5. The General Postprocessor (POST1) | 5.3. Reviewing Results in POST1).
7,材料模型,材料模型的输入也是至关重要的。这部分请参看
Basic Guide | Chapter 1. Getting Started with ANSYS | 1.2. Building a Model
1.2.4. Defining Material Properties
或者动力显式分析的材料模型请参看
LS-DYNA User's Guide | Appendix B. Material Model Examples |
B.2. Material Model Examples

8,至于算法的选择,如何考虑精确程度,和计算效率,这些就要具体问题具体分析了。这部分可在参考单元描述的同时参看理论手册.
ANSYS, Inc. Theory Reference,挺遗憾的,好象HELP上面没有lsdyna的理论手册,不过,网上这个很容易找到,论坛里面也有,搜一下吧。

9,有一些高级的分析技术,Advanced Analysis Techniques Guide
优化设计,拓扑优化,子模型,网格自动重划等。自己看看吧,这部分好象有一本中文书的,好象翻译的还可以.

举报 回复
水幽寒 发表于 2006-12-11 21:26:21
学习ANSYS经验总结(来自CAE联盟)
1学习ANSYS需要认识到的
相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:
1.1将ANSYS的学习紧密与工程力学专业结合起来
毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。
作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后面的工作变得相对简单。建模能力的提高,需要掌握好的建模思想和技巧,但这只能治标不能治本,最重要的还是要培养较强看图纸的能力,而看图纸的能力培养一直是我们所忽视的,因此要加强对《现代工程图学》的回忆,最好能同时结合实际的操作。
以上几个方面,只是说明在ANSYS的过程中,不要纯粹的把ANSYS当作一门功课来学,这样是不可能学好ANSYS的,而要针对问题来学,特别是遇到的新问题,首先要看它涉及到那些理论知识,最好能作到有所了解,然后与ANSYS相关设置结合起来,作到心中有数,不至于遇到某些参数设置时,没一点概念,不知道如何下手。工程力学专业更多的偏向于理论,往往觉得学了那么多的力学理论知识没什么用,不知道将来自己能作什么,而学ANSYS实际起到了沟通理论与实践的桥梁作用,使你能够感到所学的知识都能用上,甚至激发出对本专业的热爱。
1.2多问多思考多积累经验
学习ANSYS的过程实际上是一个不断解决问题的过程问题遇到的越多,解决的越多,实际运用ANNSYS的能力才会越高。对于初学者,必将会遇到许许多多的问题,对遇到的问题最好能记下来,认真思考,逐个解决,积累经验。只有这样才会印象深刻,避免以后犯类似的错误,即使遇到也能很快解决。因此,建议一开始接触ANSYS就要注意以下三点:
l        要多问,切记不要不懂就问。在使用ANSYS处理具体的问题时,虽然会遇到大量ERROR提示,实际上,其中许多ERROR经过自己的思考是能够解决的简单问题,只是由于缺乏经验才感觉好难。因此,首先一定要自己思考,实在自己解决不了的问题才去问老师,在老师帮你解决的问题的过程中,去享受恍然大悟的感觉。
l        要有耐心,不要郁闷,多思考。对初学者而言,感觉ANSYS特别费时间,又作不出什么东西,没有成就感,容易产生心理疲劳,缺乏耐心。“苦中作乐”应是学ANSYS的人所必须保持的一种良好心态,往往就是那么一个ERROR要折磨你好几天,使问题没有任何进展,遇到这种情况要能调整自己的心态,坦然面对,要有耐心,针对问题积极思考,发现原因,坚信没有自己解决不了的问题,要能把解决问题当作一种乐趣,时刻让自己保持愉快的心情,真正当你对问题有突破性进展时,迎接的必定是巨大的成就感。
l        注意经验的积累,不断总结经验。一方面,初学时,要注重自己经验的积累(前面两点说的就是这个问题),即在自己解决的问题中积累经验;另一方面,当灵活运用ANSYS的能力达到一定程度时,要注重积累别人的经验,把别人的经验为自己所用,使自己少走弯路,提高效率,方便自己问题的解决。对于ANSYS越学到后面就越感觉是一个经验问题,因为该懂得的基本都懂了,麻烦的就是一些参数的调试,需要的是用时间去摸索,对同一类型的问题,别人的参数已经调试好了,完全没有必要自己去调试,直接拿来用即可。
1.3练习使用ANSYS最好直接找力学专业书后的习题来做
可能这一点与学习ANSYS的一般方法相背,我开始学ANSYS时也是照着书上现成的例子做,但照着书上的做就是做不出来,实在没有耐心,就干脆从书上(如材力,弹力)直接找些简单的习题来做。尽管简单,但每一步都需要自己思考,只有思考了的东西才能成为自己的东西,慢慢的自己解决的问题多了,运用ANSYS的能力提高相当明显,这可能是我无意中对学ANSYS在方法上的一点创新吧。我觉得直接从书上找习题做有以下好处:
l        从书上找习题练习是一种更加主动的学习方法,由于整个分析过程都要独立思考,实际上比照着书上练习难度更大。对初学者来说,照着书上练习很难理解为什么要这么做,因此,尽管做出来了,但以后遇到类似问题可能还是不知道
l        书上现成的例子基本上是非常经典的,是不可能有错的,一旦需要独立解决问题时,由于没有对错误的处理经验,遇到错误还是得要从头摸索,可以说,ANSYS的使用过程就是一个解决ERROR的过程,ERROR实际上提供了问题的解决思路,而自己找问题做,由于水平并不高,必将会遇到大量的ERROR,对这些ERROR的解决,经验的积累就是ANSYS运用能力的提高。
l        将书上的习题用ANSYS来实现,可以将习题的理论结果和ANSYS计算的数值结果进行对比,验证ANSYS计算结果的正确性,比较两者结果的差异,分析产生差异的原因,加深对理论的理解,这是照着现成的例子练习所作不到的。  
当然,并不就说书上的例子毫无用处,多多看下书上的例子可以对ANSYS的整个分析问题的过程有比较清楚的了解,还可以借鉴一些处理问题的方法。
1.4 保持带着问题去看ANSYS是怎样处理相关问题的良好习惯
可能平时在看关于ANSYS的参考书籍时,对其中如何处理各种复杂问题的部分,看起来觉得也并不是很难理解,而一旦要自己处理一个复杂的非线性问题时,就有点束手无策,不知道所分析的问题与书上的讲的是怎么相关的。说明要将书上的东西真正用到具体的问题中还不是一件容易的事情。带着问题去看ANSYS是怎样处理相关问题的部分,可能是解决以上问题的一个好方法:当着手分析一个复杂的问题时,首先要分析问题的特征,比如一个二维接触问题,就要分析它是不是轴对称,是直线接触还是曲线接触(三维问题:是平面接触还是曲面接触),接触状态如何等等,然后带着这些问题特征,将ANSYS书上相关的部分有对号入座的看书,一遇到与问题有关的介绍就其与实际问题联系起来重点思考,理解了书上东西的同时问题也就解决了,这才真正将书上的知识变成了自己的东西,比如上个问题,如果是轴对称,就需要设置KEYOPT(3),如果是曲线接触就要设置相应的关键字以消除初始渗透和初始间隙。可能就会有这样的感慨:原来书上已经写得很清楚了,以前看书的时候怎么就没什么印象了。
如果照着这种方法处理的问题多了的话,就会进一步体会到:其实,ANSYS的使用并不难,基本上是照着书上的说明一步一步作,并不需要思考多少问题,学ANSYS真正难得是将一个实际问题转化成一个ANSYS能够解决且容易解决的问题。这才是学习ANSYS所需要解决的一个核心问题,可以说其他一切问题都是围绕它而展开的。对于初学者而言,注重的是ANSYS的实际操作,而提高“将一个实际问题转化成一个ANSYS能够解决且容易解决的问题” 的能力是一直所忽视的,这可能是造成许多人花了很多时间学ANSYS,而实际应用能力却很难提高的一个重要原因。
1.5熟悉GUI操作之后再来使用命令流
ANSYS一个最大的优点是可以使用参数化的命令流,因而,学ANSYS最终应非常熟练的使用命令流,一方面,可以大大提高解决问题的效率;另一方面,只有熟悉命令流之后,才会更方便的与人交流问题。
老师一开始讲授ANSYS时往往把ANSYS吹得天昏地暗,其中一条必定是夸ANSYS的命令流是如何的方便,并且拿GUI与命令流大加对比一番。问题也确实如此,但对那些积极性相当高且有点好高骛远的同学可能就会产生误导:最终是要掌握命令流,学了GUI还去学命令流多麻烦诺,干脆直接学命令流算了,不是可以省很多事吗?如将这种想法付诸于实践的话往往是适得其反,不仅掌握命令流的效率底,而且GUI又不熟悉,结果使用ANSYS处理问题来就有点无所适从,两头用得都不爽。因此,初学者容易一心想着使用命令流,忽视对GUI操作的练习,难以认识到命令流与GUI的联系:没有对GUI的熟练操作要掌握好命令流是很难的,或者代价是很高的
直接去学命令流之所以难,一个是命令太多,不易知道那些命令是常用的,那些是不常用的,我们只要掌握最常用的就足够了,而如果GUI使用得多的话,就会很清楚那些命令是常用的(实现的目的一样),以后掌握命令流就有了针对性;另一个是一个命令的参数太多,同一个命令,通过参数的变化可以对应不同的GUI操作,事先头脑里没有GUI印象的话,对参数的变化可能就没有很多的体会,难以加深对参数的理解。因此,建议初学者不用管命令,踏踏实实的熟悉GUI操作,当GUI操作达到一定程度后,再去掌握命令流就是一件很容易的事情,当然也需要大量的练习。实际上,大多数使用者而言,基本上是将GUI操作与命令流结合起来使用,没有人会完全用命令流解决问题的,因为没有必要去记那么多命令,有些操作GUI用起来更加直观方便。一般而言,前处理熟悉使用命令流比较方便,求解控制里面使用GUI比较好。
此外,还有一点初学者也需注意,一开始学ANSYS主要是熟悉ANSYS软件,掌握处理问题的一般方法,不是用它来解决很复杂的问题来体现你的能力有多强,一心只想着找有难度的问题来着,往往容易被问题挂死在一棵树上而失去了整片森林。因此,最好多找些容易点的,涉及到不同类型问题的题来做练习。







2 一些ANSYS的使用经验
ANSYS的使用主要是三个方面,前处理——建模与网格划分,加载设置求解,后处理,下面就前两方面谈一下自己的使用经验。
2.1前处理——建模与网格划分
要提高建模能力,需要注意以下几点:
l        建议不要使用自底向上的建模方法,而要使用自顶向下的建模方法,充分熟悉BLC4CYLIND等几条直接生成图元的命令,通过这几条命令参数的变化,布尔操作的使用,工作平面的切割及其变换,可以得到所需的绝大部分实体模型,由于涉及的命令少,增加了使用的熟练程度,可以大大加快建模的效率。
l        对于比较复杂的模型,一开始就要在局部坐标下建立,以方便模型的移动,在分工合作将模型组合起来时,优势特别明显,同时,图纸中有几个定位尺寸,一开始就要定义几个局部坐标,在建模的过程中可避免尺寸的换算。
l        注重建模思想的总结,好的建模思想往往能起到事半功倍的效果,比如说,一个二维的塑性成型问题,有三个部分,凸模,凹模,胚料,上下模具如何建模比较简单了,一个一个建立吗?完全用不着,只要建出凸凹模具的吻合线,用此线分割某个面积,然后将凹模上移即可。
l        对于面网格划分,不需要考虑映射条件,直接对整个模型使用以下命令, MSHAPE,0,2D  MSHKEY,2  ESIZE,SIZE  控制单元的大小,保证长边上产生单元的大小与短边上产生单元的大小基本相等,绝大部分面都能生成非常规则的四边形网格,对于三维的壳单元,麻烦一点的就是给面赋于实常数,这可以通过充分使用选择命令,将实常数相同的面分别选出来,用AATTREALMAT,赋于属性即可。
l           对于体网格划分,要得到比较漂亮的网格,需要使用扫掠网格划分,而扫掠需要满足严格的扫掠条件,因此,复杂的三维实体模型划分网格是一件比较艰辛的工作,需要对模型反复的修改,以满足扫掠条件,或者一开始建模就要考虑到后面的网格划分;体单元大小的控制也是一个比较麻烦的事情,一般要对线生成单元的分数进行控制,要提高划分效率,需要对选择命令相当熟悉;值得注意的是,在生成网格时,应依次生成单元,即一个接着一个划分,否则,可能会发现有些体满足扫掠的条件却不能生成扫掠网格。
2.2 加载求解
对于有限元模型的加载,相对而言是一件比较简单的工作,但当施加载荷或边界条件的面比较多时,需要使用选择命令将这些面全部选出来,以保证施加的载荷和边界条件的正确性。
ANSYS求解过程中,有时发现,程序并没有错误提示,但结果并不合理,这就需要有一定的力学理论基础来分析问题,运用一些技巧以加快问题的解决。对于非线性分析,一般都是非常耗时的,特别是当模型比较复杂时,怎样节约机时就显得尤为重要。当一个非线性问题求解开始后,不用让程序求解完后,发现结果不对,修改参数,又重新计算。而应该时刻观察求解的收敛情况,如果程序出现不收敛的情况,应终止程序,查看应力,变形,等结果,以调整相关设置;即使程序收敛,当程序计算到一定程度也要终止程序观看结果,一方面可能模型有问题,另一方面边界条件不对,特别是计算子模型时,数据输入的工作量大,边界位移条件出错的可能性很大,因而要根据变形结果来及时纠正数据,以免浪费机时,如果结果符合预期的话,可通过重启动来从终止的点开始计算。下面举两个例子说明:
在做非均匀材料拉伸模拟材料颈缩现象的有限元数值计算时,对一个标准试件,一端固定,另一端加一个X方向的位移,结果发现在施加X方向的位移的一排节点产生了很大的Y方向位移,使得节点依附的单元变形十分扭曲,导致程序不收敛而终止,而中间的单元并没有太多变化。显然,可以分析在实验当中施加X方向的位移的一排节点是不应有Y方向的位移的,为了与实验相符应消除Y方向的位移,可同时施加一个Y方向的零约束,重新计算,结果得到了比较理想的颈缩现象,并可清楚的看到45度剪切带。
在做金属拉拔的塑性成型有限元模拟时,简化为一个二维的轴对称问题,相对于三维的接触问题而言是比较简单的了,建模,划网格都很顺利,求解时发现程序不收敛,就调参数和求解设置,基本上作到了该做的设置,该调的参数都试过了,程序照样不收敛,几乎到了快放弃的地步,没办法只好重新开始考虑,发现刚体只倒了一个角,而另一个倒角开始时认为没有必要倒,因此,试着重新倒角再计算,问题一下子迎刃而解,程序收敛相当快,有限元计算结果相当漂亮。
从以上两个例子也可以从中总结出一条:要把我们思考问题时的那些想当然的想法也要作为在分析问题时的检查对象。
举报 回复
ftyl 发表于 2006-12-12 17:55:22
好贴!:)
举报 回复
yangjianju... 发表于 2006-12-19 17:12:36

不错!

受益非浅!:victory:
举报 回复
水幽寒 发表于 2006-12-21 22:45:09
希望我们这个论坛成为一个真正的讨论问题的论坛,而不仅仅是个资料的集散地!!!
举报 回复
bb20040291 发表于 2007-4-11 03:09:25
呵呵 不错的总结 谢谢
举报 回复
luzhuang79 发表于 2007-4-17 15:46:18

多看帮助!

ansys的帮助其实说的很清楚,也很详细,如果能看进去,一般的问题都可以解决。
举报 回复
fqf73 发表于 2007-4-21 11:05:30
晕,,,看不懂啊,真受不了
举报 回复
logi 发表于 2007-5-1 00:44:28
受益非浅啊,太感谢了,以后要常来看看
举报 回复
lioncold 发表于 2007-5-10 10:56:21
好贴,不过我还是看不太明白
举报 回复
yyxxgg000 发表于 2007-5-10 22:16:37
自我感觉ansys做局部分析不错,整体分析就不太好了,数据出路比较麻烦。综合评价ansys:不错,和专业软件相比感觉操作性一般,毕竟他是通用软件。
举报 回复
yyxxgg000 发表于 2007-5-10 22:19:23
综合比较起来,还是比较喜欢ansys的,如果是做桥梁的话,大桥局设计院的软件真的是不错的,可你和奥地利的TDV抗衡!!!
举报 回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

 
 
  • QQ:56984982
  • 点击这里给我发消息
    电话:13527553862
    站务咨询群桥头堡站务咨询桥梁专业交流群:
    中国桥梁专业领袖群
    工作时间
    8:00-18:00