中承式无横撑集束钢管混凝土平行肋拱桥

mjj3432 发表于 2009-1-18 22:46:24 | 显示全部楼层 | 阅读模式
【摘要】中承式集束钢管混凝土平行助拱桥,桥道以上无横撑,国内尚不普遍。本文作为"集束钢管混凝土提篮拱桥"研究系列之一,探讨了结构性能、结构参数、设计与实践。拱肋钢管的"无极绳"吊运,桥道横梁"荡提法"安装,具有明显的技术、经济优势,较通常的天线吊装,节省费用50%以上。  _; B$ q% T$ r4 T/ H
【关键词】钢管混凝土 拱桥
8 I' h  y' G/ k8 H" q( y. D: D; P* f+ f7 S9 ~" u0 B
钢管混凝土(CFST)拱桥,在公路建设中,发展势头很好,无论结构形式还是建设规模,均可谓精彩纷呈。本文研究了三管集束拱肋截面,中承式双肋拱桥,桥道以上无横撑。作为工程实践,于1999年10月建成了洪州大桥,试验及初步运营表明,结构性能、景观效果均获好评。
/ F7 p6 k% I3 z5 c) [: z; B% G四川省洪雅县青衣江洪州大桥,全长659m,桥宽16m;孔跨布置由南向北为2@30+100+14@30m。引孔为跨径l=30.0m,拱度f/l=1/6的空腹式石拱桥(图1);全桥设计荷载:汽-20级,挂-100级,人群3.5kN/平方米。1 }5 n, d6 O, T( [

$ r/ ?! H# ]8 s6 z. E/ I" B4 J" ?  y, ^/ I- z0 D: [
一、主跨集束钢管混凝土拱桥6 l4 \: v7 v5 ~" o/ ?& T$ c
主孔为跨径l=100m,拱度f/l=l/4的中承式肋拱。现择要叙述本桥的技术特点。
* M0 h" C% `) Z+ `7 M1.拱肋
5 p! \$ J6 G( k) U" M6 I$ G5 b拱肋为三管集束截面,即3φ(700~1200)*(8~10)mm。
/ V% e/ D& Q. M$ }3 l管间以筋板焊接联系为整体,沿管径方向设φ32的联系筋,管间曲边三角形灌注砂浆填充,以保证集束截面的整体性,实现全截面抗力的要求。计算和实践均表明了它的可靠性。
5 k$ k! j! R8 a) u1 K& D7 C* X) {拱肋钢管材料为Q235b,管心泵灌C40混凝土;拱轴线采取抛物线,优化原则是恒载弯矩为最小;拱肋截面变化规律,取Ritte公式。为了改善拱轴线恒栽变形,钢管直径也可沿跨径方向取抛物线规律变化。
/ v# A. p0 M- ?变截面钢管采用纵向卷制,沿母线焊接为下大上小的圆台形管段,每段长2m左右,然后接长为7~10m的吊装段。上述构思,基于以下考虑:3 P7 y) u' K- Y' W$ `" N
·拱肋为完全的CFST,可以充分利用CFST的强度和刚度优势;
4 P( Q1 i- W( X# {7 [( {7 O·最大限度地减少管道节点,特别是活载受力的节点,以避免节点应力集中及活载引起的疲劳损伤。本桥桥道以上无管道节点,桥道以下斜撑节点作了缓和应力集中的构造处理和疲劳设计。
8 ~6 y7 I1 [& k# r9 H! `, e·保证结构的整体刚度,对于轻型结构的特大桥,刚度往往控制设计。多管集束截面,整体性强,刚度大。很少小于90°的"死角"连接。减少积水,便于防腐操作和保证防护寿命。
' u# |: ^( D( O/ F' ]·多管集束,管心混凝土分管泵灌,施工荷载集度划分变小,有利于施工安全。多管集束可组合为优越的截面形式。
) W( H& H* z1 o& c  s  _% {# c  q2.肋间横撑9 O. g( A# P! _/ \/ s
关于肋间横撑,有的称为“风撑”([3]),笔者曾在文献[1]中,对此表达过见解。现今的拱式体系中,横撑的作用,主要在于刚度贡献,而非只是承受风载的"风撑",其构造尺寸也不是依据风载作用决定,而是根据刚度设计的需要取定的。9 s5 @* h" r5 f5 o/ S( j: ~! Z$ b
洪州大桥主跨桥道以上不设横撑,不仅是为了构造简单和节省材料,主要在于肋间构造经适当处理和正确计算后,可以不设横撑,能够保证结构的刚度及稳定性所必需的安全度,使长大桥的桥面以上,视野畅通,无阻断,轻松,简洁。相应地桥道以下则须布置强劲可靠的横向联系,并特别注意单肋根部(拱肋与桥道相交处)的联系构造(图1)。本桥桥道以下设置了两道K型横撑,截面为2φ1400*(8~10)mm。除以喇叭口与拱肋连接外,管内尚没必要的联结钢筋,以保证必需的联结刚度。1 s, q2 {! o5 T( Q
显然,这里注重拱肋的整体性,特别是联结刚度,力求避免如管道桁架体系中那样,成百上千的管道节点,缓和或避免节点应力集中及疲劳失效的困扰。( |. Y4 ~/ J2 I: p% k( e
3.桥道系! c2 k2 C# W4 H2 G
桥道系为悬吊横梁加纵向简支-连续桥道板组成。横梁间距5.38m,未设连续纵梁。横梁为P.C混凝土,桥道板为R.C结构。, [$ f% R" c1 z2 y' O
自1990年成渝高速公路中承式提篮拱桥研究和应用开始,对于桥道与拱肋相交处就采取了只设横撑不兼横梁,以使拱肋受力明确。分析认为,近年发生的某些重大桥梁事故,与该部位设置模撑兼作横梁的联系构造以及使用加载不当,有一定的关系。
/ n1 \1 z5 n- ]8 d* i$ Q4.吊杯吊具' n8 R3 S; s$ y/ Q2 W3 Y+ G
吊杆为121φ7平行高强钢丝束。本桥吊杆吊具设计的要点是见图2。
. x: W3 I5 L. q; e1 j  `- p; d- v
) U% ]2 L% h7 u  m3 R·连接器
/ V1 k  ?' C: T拱肋内侧设置吊杆连接器,肋内连接段的钢丝数为吊杆的1.3~1.5倍;拱肋钢管内设固定锚板,连接器下端设连接环与吊杆上端相连接;吊杆之下端,置于横下缘,锚具为冷铸激头锚。
. r, o! _( X" J( c* J) M: o·双吊杯
. U8 d3 y+ o( ?. ?  W横梁两侧各设两根吊杆(即一横梁4根吊杆),按一根承载(至少是恒载)设计,同时布置两根。一则为了安全,再则为了便于吊杯拆换。' Q' p  W. o# k: P
·吊杆间距
2 V+ Q9 r" M  L* ~4 {7 c7 A笔者倾向于取8m左右为宜,目的在于优化横梁与桥道板设置。本桥基于建筑效果考虑,横梁间距取为5.38m。吊杯及连接器防护与一般无异,不详述。0 f# w/ A- r7 t- L$ G1 i& T9 `4 ?
5.钢管防护
. t8 `( L- T* T' x本桥钢管采用复合材料防护。厚度为1~3mm,防护构造由隔离、强度及耐候胶衣三层组成,如图3所示。: F7 Z0 o. O2 }- B

) c1 A9 V: Y( k: k防护构造含有不低于钢材强度的纤维增强层,以适应钢管受力变形的需要;外层胶衣,抵抗大气、酸雨、盐雾、湿热的腐蚀,可任意配色。耐候胶衣层老化后,尚可重新喷涂覆盖,焕然一新。5 h; ^8 L% Z, F8 {$ h& i! v
防护施工,采用专用设备喷涂,只需清除钢管表面异物,清洁、干燥即可,勿须喷砂除锈等费时费事的环节。! u% g6 h. I# z6 r- ~/ ]
复合材料防护层,成强过程中具有一定的收缩量,因此,防护层与钢管表面除了具有粘结力外,还具有收缩引起的紧箍力。. A3 X2 Z7 n! x2 b: Q
经中国科学院金属所对比实验表明:复合材料防护之抗酸雨、盐雾、湿热等腐蚀性能,显著地优于喷锌、喷铅防护,防护寿命远比后者长。
' r3 ~( T7 ]* d5 U  E已有的工程应用之价格,低于喷锌、喷铅防护。, V+ d1 n; L5 q( c3 c2 [
6.拱座 + v! B! e; U' U) x3 z0 n. ~, n
拱肋钢管伸入拱座混凝土0.5mm左右,与拱座内预埋钢板相焊接,管内设有埋入拱座的锚固筋。拱座内设有多层钢筋网。
8 L- s4 V  S6 \1 e" O
& H: v  Z' A' i) _" \' N二、拱肋计算$ |) N$ U$ n/ p
桥道以上无横撑集束钢管混凝土肋拱桥,除了通常的设计计算以外,具有特点的是拱肋的稳定性计算及施工计算。
9 [4 \- s* N2 x4 ]1.拱肋强度计算) `& U8 w3 e& R6 d
强度设计验算,按桥规作了不同荷载及其组合工况的计算,控制截面最不利组合的计算成果,均能满足桥规之极限状态设计准则。5 a3 W) N3 ~4 ^+ O! A, C
2.拱肋稳定性计算
; K( h: V- E  d, U8 |9 }% h本桥为变截面肋拱,桥道以上没有横撑,单肋独立承载,为全面考查体系的面内、外稳定性,取两种计算模型:全拱模型、桥道以上的单肋模型。
- H8 \9 F0 i/ j( k* B3 z+ C$ k计算结果汇总如表1。结构稳定性,满足安全系数k>4~5之判据。. ~7 e: x7 [) a3 {0 g

4 x+ w7 t; H0 x4.施工计算
7 Q" P' r' N; W3 @$ j' u/ r对大桥施工中可能出现的各种典型工况进行了验算,即空钢管状态,以及按图4之1→2→3的顺序泵灌混凝土等四种工况。管1泵灌之混凝土成强后,再泵灌2管及3管;泵灌2,3管时,将对拱肋作抗扭计算。
. p. N6 `3 O* S  W按规范指示,施工验算,取容许应力方法及相应的准则及判据。% r& L; `& T( y
三、施工
! e3 C" n) L$ f, h' D: H% y$ ^横梁吊装亦需进行控制计算,计算不难在内力影响线上实现,计算响应的位移和应力,用以控制施工。
4 ~# `' [- D* L  X5 t5 l* c本桥主跨拱肋的施工,特点是拱肋钢管的焊接和无极绳运送,以及横梁的'荡提法"吊装。% y3 L8 K5 k* l6 X3 d$ j
1.拱肋钢管
5 Z  Q' ^& s0 {- @* v& f6 p拱肋3根钢管,在同一截面直径相同;沿跨径方向钢管直径取为变量。施工放样所需坐标及参数为管径ri;,截面形心(C)坐标(xc,yc),每个截面的拱腹和拱背坐标,如图4所示。拱管分段(≈2m)卷制焊接、接长、组拼为吊装段。" n8 a( F) f  h* @# m

' r9 u( C5 {6 b7 d& V, ]* P2.拱肋钢管吊装8 R4 L4 G+ v* j( }: U, A  L
·拱肋钢管吊装程序先将图4之2,3管组拼为吊装段,重量控制在7t左右,逐段吊装接长合龙成拱;再在2,3管组成的拱肋上,铺装1管,最后形成三管集束截面的拱肋。
8 I' @% u: w; m# M' a·拱肋钢管吊装拱助钢管的吊运(图5),采用环状封闭的无极绳系统,以小吨位(5t)卷扬机作动力,轻型塔架支撑。钢管吊件的水平运输以无极钢绳的周向运动实现,竖向运输以塔架上的竖向滑车组收、放实现,吊装布置如图5所示。
9 ^* P8 a: Y9 z( y* H0 N5 v, F
+ ^' w% Z$ ^' e5 }  V+ H3.横梁吊装
% f; E0 e2 g3 F8 M6 i& v桥位处江水水位不稳定,大型浮吊无法作业,通常的天线吊装,价格达210万元(包括拱肋及桥道)。本桥桥道横梁用拱肋为支撑,采用"荡提法"吊装。所用设备及工艺均较简便。横梁重量38t左右。吊装布置如图6。" {! m! L* k, g4 ?- I9 j

3 @6 Y6 [+ w! C/ N  g工艺原理,即T1滑车组为横梁的提升系统;T2为水平移动系统。根据设备能力,确定水平荡移的角度≤17.5°,相应的移动平距为10~12m;滑车组竖直提升,可根据设备能力决定。当完成了工序I后,将横梁交付到工序Ⅱ的提升滑车组上,继续荡移,循环移动。具体细节,在此不再赘述。
9 h( C/ M8 D3 r- C$ @% H4.效果! A8 t4 ~! N- [. e- j* j9 P( P- X
吊装所用设备很少,施工操作安全,运行自如,速度不算低。整个吊装费用仅90万元左右。* s4 T/ _1 n# n, G7 D& y
本桥原设计为R.C箱肋拱,开工后方才改为现行集束钢管混凝土肋拱方案。原R.C箱肋拱后吊重达70t,吊装费用210万元。两者相比,荡提法吊装横梁及拱肋钢管无极绳吊装,节省吊装费用110万元。
3 R# ]! F/ @# M+ M
7 P. `4 Y1 N0 F四、实验检定
! l" x8 T' W$ e+ b洪州大桥的体系、构造及施工均有其特点,按竣工验收要求,进行了实载检定试验。! h* {' l) x% |# u
现代大跨径桥梁,采用高强材料,体系轻型,按极限状态理论设计:加之一般的电测法,野外观测应变的可行性、可靠性值得商准。因此检定实验,以活载变形(刚度)检测为主,以动载响应为主。在完成了规定的试验工况后,尚作了一定的超越(包括荷载工况及检测内容),以便为体系研究积累资料。
* L! R1 Z5 {( D1.试验设备及方法8 I6 L* ~7 J2 c' ]: o. h
通常的静载试验及量测为大家所熟知,不详述。
1 b" u) I: d1 N9 E+ `6 q7 D动载试验采用B&K431三轴向压电式加速度传感器,拾取桥梁竖向和横向信号;用B&K2635双积分电荷放大器转换为电压信号,将方向的信号记录于XR-50C的不同声道上;再以HP3562A动态信号分析仪进行分析处理,得到被测对象的固有频率、振幅、加速度等;进而求得前五阶模态两个方向的频率、阻尼比、振型等。( x7 b/ y1 P. P6 Y
2.试验结果
0 S4 b+ I6 m0 \6 K/ B静载试验按设计之最不利加载,荷载效率取η=1.0。其主要响应如表2,表3。7 t  F/ H( I6 f9 ^4 q8 l: ]
0 u& K. O) J. i/ W. p, g1 s  J( e

1 j4 N' b2 `0 |动载试验之挠度峰值为5.01mm;加速度峰值为0.463cm/s2;平均冲击系数DAF=1.135。1 a" [1 P( y0 f
3.试验分析/ Q0 j' c/ c1 p* e7 @; g/ F
·静载试验分析及结论
5 P% C, P# H! w* K' `8 _1 T(1)试验结果,拱顶Mmax工况的设计计算值为Sstat=18.0mm,试验峰值为S=5.4mm;在各种静力工况下,拱顶截面最大(面外)横向挠度为1.0mm,其余各截面测不到读数(即小于1.0mm)。结构的荷载效应η≈1.0时,弹性变形之实测值(Se)与计算值(Sstat)相比,前者仅为后者的1/3左右,系因设计计算模型偏安全取定所致;表明设计和施工均是可靠的。/ k, [- E% G0 V6 I9 U% _
(2)静载试验非弹性的残余变形很小--小于量测精度,这是因为荷载试验前,桥梁实际已经承受施工活载及非正式运营载荷,非弹性变形已基本消除。
  W  `6 S' I9 a$ l) U(3)拱肋非对称加载,如L/4截面Mmin工况,所发生的拱肋挠度亦为非对称,且与理论预测接近。' ?6 j* H7 l; [0 Z: |- U5 {
(4)对比上下游拱肋在各工况下的变形响应,小有出入,一般为5%~10%左右,且上下游拱肋或高或低并非一致,荷载愈大相差愈小。
" X+ `# _0 @. w' s(5)试验未发现可见裂缝,拱脚无位移。4 @0 e+ ^2 f/ F, K9 K2 l6 l0 x
·动载试验分析与结论
3 A/ p# r' z/ O! {. S+ Y  L(1)结构竖向自振一阶频率为0.82,阻尼比为0.16;横向自振一阶频率为0.72,阻尼比为0.03,与一般同类桥梁相近,与结构体系的特点相符。
) v% X: v* s1 A' c, S  Q( G8 _& P# U(2)桥梁结构冲击系数平均为1.135,相应的车速为20km/h。这与结构的刚度,桥面的平整度及障碍物有关。当桥面不平整或遇障碍物时,将加大对桥梁的直接冲击,增大振幅,加大冲击系数。2 A" o8 z$ k; N) w: c: y( p
(3)当汽车以V=40km/h通过时,冲击振幅增大,可能系因行车振频与桥梁低阶频率相近,试验表明冲击系数与车速成非线性关系。; G. M6 o4 b4 p; X) V, j% j2 [7 e
(4)由各阶振型曲线可知,桥面振动幅值在0.51~0.32mm之间,属于正常弹性振动。) }" l" [7 d: F% s  G  [
(5)桥上行人的有感震动频率为2~6Hz,试验中的感受得到了证实。5 S7 i- _; M5 N$ A6 H4 W9 c
大桥已经运行两年,情况良好。
" A# L% E- L% n2 |; s先后参加此项工作的还有谢玲玲、姜瑞娟、董海、饶俊勇和张耀等。) e$ y; D$ j) Q) b4 R
3 v! i- V% B* q9 H
参考文献
4 Z) v; U. C, S; z8 z3 U$ h4 F3 @[1]汤国栋等.拱式桥梁的新进展--成渝公路内江提篮拱桥建成.成都科技大学学报,1996年第2期,p4l~52
1 D  ?! s! _) b  P3 t5 ^- E3 j[2]钟善桐.钢管混凝土结构.哈尔滨:黑龙江科学技术出版社,1994
( w! T4 c+ t% Y3 M0 x[3]陈宝春.钢管混凝土拱桥设计与施工.北京:人民交通出版社,1999+ k% _- M6 \; u4 y
[4]汤国栋,汤羽.轴向受压钢管混凝土短柱的表观弹塑性本构方程及其极限承载力.中国公路学报,1991年,第13期
您需要登录后才可以回帖 登录 | 注册

本版积分规则

 
 
  • QQ:56984982
  • 点击这里给我发消息
    电话:13527553862
    站务咨询群桥头堡站务咨询桥梁专业交流群:
    中国桥梁专业领袖群
    工作时间
    8:00-18:00