波形钢腹板结构的意义及应用讨论

redflag 发表于 2015-11-3 16:04:40 | 显示全部楼层 | 阅读模式
193252coohhzyu8jdsouan.jpg.thumb.jpg    
. U3 r! s( B& Q. ^. \2 i' A
       波形钢腹板桥是采用波形钢腹板代替传统的预应力混凝土箱梁中混凝土腹板的一种组合结构桥梁,其结构的主要特点是减轻主梁的自重,提高混凝土主梁的预应力效率,减少现场工作量,降低工程成本。
1 h1 ^( r# \. x( d0 {
20111227021358158.png
1 }+ d  O  s1 X% Z# L8 `
  • 箱梁自重减轻:用波形钢板置换混凝土腹板后,可使箱梁自重减轻20~30%,从而使上下部结构的工程数量减少,工程造价降低10%左右,且因此改善了结构抗震性能,这点也是日本这个多发地震国家看中的优点之一。
  • 提高预应力效率:因波形钢腹板的褶皱效应,波形钢腹板不承受顺桥向拉压力,所以顶底板预应力效率会提高,从而可减少预应力钢材用量,简化受力分析。
  • 提高腹板抗剪能力:大跨度预应力混凝土箱梁桥的常见病害是混凝土腹板的开裂,用抗剪能力高的波形钢腹板承受箱梁桥剪力,从根本上改善了预应力混凝土箱梁桥的抗剪性能,这点对我国百米以上的PC箱型连续梁普通存在的工程病害很有针对性。
  • 节约建桥成本:因腹板无须浇筑,故模板、混凝土浇筑工作量可减少;因箱梁自重轻,故节段施工时节段长度可加大,又因波形钢腹板可作悬臂施工的挂篮、顶推用导梁承重结构,这些可致使施工的简化、建设速度的加快。1 A- h- V9 Q8 [" s6 Y
QQ图片20151103170721.png
: s9 W! L$ Q3 t' k' z4 P
个人的理解:2 g9 I* j  b) @0 C; j" H8 e
波形钢腹板结构的主要意义在于解决大跨度P.C箱梁腹板混凝土收缩徐变以及腹板开裂问题。最近又听说国内开展了上述结构在拱桥的应用, 技术性及经济性都感觉不太理解。抛砖引玉,跟大家一起讨论一下这种结构。
4 K, S3 i: x( |- P3 |& b; X* L

评分

参与人数 1堡币 +3 威望 +3 收起 理由
cjcc + 3 + 3 赞一个!

查看全部评分

精彩评论正序浏览

1.3万查看7评论

绿城景观桥... 发表于 2018-8-1 17:23:44
{:4_94:}{:4_94:}
举报 回复
cjcc 发表于 2015-11-6 13:58:00
本帖最后由 cjcc 于 2015-11-6 14:05 编辑 2 K' D4 W/ v/ W* d: A9 J8 L
0 w( M. c) t1 s
设计标准方面有几个:
. X, o4 H5 Y, ^5 V5 y8 Z* P日本预应力混凝土技术协会 2005 《复合桥设计施工规准》5 p! R) B$ Z4 N
河南省交通规划勘察设计院 2010 《公路波形钢腹板预应力混凝土箱梁桥设计规范》5 e& J7 g3 A! f4 W* U
深圳市政 2014 《波形钢腹板预应力混凝土组合箱梁桥设计与施工规程》4 |% f! u# Z- `6 ~( E- r8 o
+ F7 n6 x! d8 D# h% o3 y% a
书籍:
+ y5 n+ L6 S9 P* ]; o% V波形钢腹板设计与制造/新型组合结构桥梁-波形钢腹板PC组合桥  李淑琴 万水 张长青 编著
/ b3 }, g& i$ g. _$ z! u组合折腹桥梁设计模式指南   刘玉擎 陈艾荣 编著
! \% z4 {' K7 v0 V' f% ~$ L
举报 回复
gexiin 发表于 2015-11-5 21:19:36
伯仲之间的考量——小砂沟大桥波形钢腹板设计施工关键技术. K6 H: [' a6 _1 g( g
小砂沟大桥主桥为(57+2×100+57)m波形钢腹板预应力混凝土连续刚构桥,具有高墩、大跨、采用波形钢腹板组合结构、位于8度地震区的四大特点。+ x2 D  M7 T$ G  f" [* O2 a
对于该桥结构设计及施工特点的研究,主要分析了高地震烈度区波形钢腹板桥设计的技术要点:采用波形钢腹板结构,可降低结构自重,改善抗震性能,降低工程造价;设置梁体简易横隔板可以提高梁体的抗扭刚度和抗畸变能力;设置桥墩耗能系梁可以在地震作用下通过牺牲次要构件来保护主要受力构件;当边墩较高时,可将波形钢腹板改造成临时吊梁完成边跨合龙。" y  s9 \6 h4 _6 T4 ]1 D4 L4 X
项目概况9 [0 v' M$ E* M" x
北环快速路是兰州市“二环路”的重要组成部分,小砂沟大桥为北环快速路的控制性工程。大桥位于黄土高原梁峁沟壑区,地形起伏较大,相对高差约126m。桥址区域地层结构简单,自上而下主要分布有湿陷性黄土,冲积卵石土,白垩系强风化、中风化、微风化砂岩。桥位处地震动峰值加速度为0.20g,对应地震基本烈度8度,地震动反应谱特征周期为0.45s,场地类型为Ⅱ~Ⅲ。
$ P. w- \" Z  ]主桥采用(57+2×100+57)m波形钢腹板预应力混凝土连续刚构,采用挂篮悬灌施工;引桥采用2×40m装配式小箱梁。主墩高分别为73 m、86 m和53 m,均采用变截面矩形空心墩;引桥采用双柱式矩形墩。基础均采用钻孔灌注嵌岩桩。, [: m% V+ _9 V4 x6 @, X1 \
主要技术标准为:$ G; b* e5 W6 i* h
道路等级:城市主干道,汽车荷载:城-A,设计车速:60km/h;桥面宽:左、右分修,半幅宽13m;地震设防:地震动峰值加速度为0.2g,地震基本烈度为8度;桥涵设计洪水频率:1/100。
# Z6 A' {! U5 ]: s上部结构设计
+ E: s9 `0 s3 X. E  N' F( H1. 箱梁横断面布置
/ L, M$ n9 `& }, M主桥跨径布置为(57+2×100+57)m,箱梁采用单箱单室断面。根部梁高6.2m,高跨比为1/16.13;跨中梁高3.2m,高跨比为1/31.25。梁底按1.8次抛物线变化。箱梁顶板宽13.0m,底板宽6.6m, 翼缘板悬臂长3.2m,顶板跨中厚0.33m,底板厚0.32m。" U" X" U" g' ]9 a4 H2 k9 R
2. 箱梁横隔板设置由于波形钢腹板箱梁的抗扭刚度小,结构在偏载作用下的扭转正应力和畸变正应力较大,扭转变形也较大;同时大桥位于8度地震区,钢腹板与顶底板的连接相对较弱,在地震力作用下连接件容易损坏。% Z* B' @9 n0 x6 F$ E3 f/ z
在不使结构自重增加太多的前提下,为了提高结构的抗扭刚度和抗畸变能力,结合体外束转向器的安装位置,大桥在边跨设置了三道标准横隔板和一道简易横隔板,中跨设置了四道标准横隔板和三道简易横隔板。
5 c( P) ^- k! }9 S9 C3. 波形钢腹板与顶底板连接波形钢腹板采用1600型,材料采用345qD钢材。波形钢腹板与顶板采用双PBL键连接。双开孔板间距360mm,板厚20~24mm,孔洞中贯穿直径28mm的横向钢筋,横向钢筋上缘再设置一层抗裂钢筋。本桥PBL连接键在同类型桥连接方式的基础上加以改进,主要表现在以下两方面:
8 G( y9 @- t2 [) ]" t* t1 f(1)开孔孔径为75mm,略大于其他波形钢腹板桥的孔径。模型试验结果表明,孔洞直径稍大可以减小剪力键的滑移量,其刚度和承载力也略有提高。
" n5 E  h4 c) t5 f8 [(2)PBL剪上缘增设了一层直径16mm的抗裂钢筋。模型试验结果表明,该钢筋穿过裂缝发展方向,对抑制连接部位混凝土开裂能起到较好的作用。
) z- T0 p  P5 h$ N波形钢腹板与底板采用L200等边角钢连接键连接,角钢间距为320mm,开孔直径为60mm,贯穿直径28mm的纵向钢筋,角钢两侧各焊接一道环形钢筋。" F/ V6 u. Y0 |2 g' ^
下部结构设计
5 q+ F% J8 N! I, l) w. L/ Q4 ]3 B1 Q* j4 F5 ^. Q1 F
1. 空心矩形框架墩的设置
; Q$ P4 q  u* q5 W3 ~小砂沟大桥主墩采用钢筋混凝土框架墩,墩身采用变截面矩形空心截面形式。左、右幅墩身底部分别与整体式承台固结为一体。为了减小墩身地震力,在墩顶设置了一至两道耗能横系梁。基础采用群桩基础。& f* j7 O" S& r" g
经过计算分析,下部结构如果采用常规的分修独柱墩,由于墩高达80m,墩底的地震内力会非常大,墩顶的横向位移也会很大,甚至会造成左右幅桥梁发生横向碰撞,严重影响桥梁安全。
, a" s  J% v2 |7 k/ Q墩身之间设置横系梁可以增加结构的整体性。在使用荷载及E1地震作用下结构能够正常使用;在E2地震作用下,系梁会先于桥墩自下而上开始屈服(对于设置多道横系梁的情况),形成塑性铰,这样可以降低桥墩刚度,同时也消耗了部分地震能量,保证桥墩主体结构的安全。
1 ]1 h5 E: ~, v通过与无耗能系梁的结构对比计算可知,耗能系梁可以显著调节桥梁地震内力的分布,使得墩顶位移及墩底受力明显改善,能大幅提高桥梁的整体稳定性及抗震性能。耗能系梁作为次要构件在地震中作出牺牲,使得主要受力构件获得保护。
, r; R0 q8 G6 I# C, ]; s2. 纵向减震装置的设置
$ q2 f- F' g7 I' V" a为了减小纵向地震力的作用,大桥采用了HDR高阻尼橡胶支座,同时在0#台和6#台设置了黏滞阻尼器,在2#交接墩设置了速度锁定器。9 |: f* m6 v3 ?8 c2 Z0 g
采取以上措施之后,在E2地震作用下2#、3#、4#、5#墩墩顶纵向位移分别减少55.7%、54.9%、56.3%、53.4%;墩底纵向弯矩分别减少54.3%,51.8%,53.%、55.7%。大桥的纵向位移和内力都能得到较好的控制。1 W3 p* t" G$ H. W
3. 钢腹板主梁方案与混凝土主梁方案的比较
! m+ r6 ]/ @# {/ e6 }设计对本桥采用波形钢腹板箱梁方案与普通混凝土箱梁方案进行了计算比较,重点对其主要工程量及造价进行了分析。
5 o7 x  x  h  Q  a# \9 {5 p* K; ~从表1可以看出,波形钢腹板主梁方案梁部混凝土体积节省了约22%,整个梁部重量减轻约19%。
; U8 X0 z7 S7 D; f# P6 g从表2可以看出,波形钢腹板主梁方案下部结构工程量显著减少。特别是桩基和承台的数量减少非常明显,分析其原因如下:, U8 r" i# g9 ^7 V* v' W
(1)由于梁部重量减轻了19%,从而大幅降低了地震作用下墩身的弯矩和剪力,使得下部结构总体尺寸减小。
, _( ?& ~  J% m(2)大桥桩基础在地震作用下为抗拔桩,所受拉力控制桩基础设计。根据抗拔桩抗拉承载力计算原理,当上拔力增加的幅度和承压力增加的幅度相同时,抗拔桩需增加的桩长远大于承压桩,故混凝土箱梁方案桩长较波形钢腹板箱梁方案明显增加。同时,拉弯构件的配筋率较高,故混凝土箱梁方案桩基工程量增加幅度较大。
1 s- X& ?9 H% E(3)混凝土箱梁方案桩基的根数以及桩间距的增加,造成了承台圬工量显著增加。
1 e; N1 |% |2 O# K- b9 K$ y. K8 R9 u从表3可以看出,波形钢腹板方案较混凝土箱梁方案的造价降低了21%,经济效益非常明显。5 D! {6 H* ?1 j3 d1 O
[img]http://img03.store.sogou.com/net/a/04/link?
8 y7 t& J  U- m' y6 eappid=100520031&w=710&url=http%3A%2F%2Fmmbiz.qpic.cn%2Fmmbiz%2FQsHB9ibhcy3KypucvLn4zjibx5sIXFeTcd1BxwDEbS5hG6gdicjXeeRWQznnuNqOT8SEVX66CaJpRXbYjKRBlUONQ%2F0%3Fwx_fmt%3Djpeg[/img]2 x2 z) E/ Y8 B7 a
! H) D8 E' t  B: f. d: n! D, z
                               
登录/注册后可看大图

! H  f! |$ K6 V' }$ S5 ]# O9 R

1 _9 M. f4 O7 `9 e  S                               
登录/注册后可看大图

7 O% j' q+ F: s. K自承重边跨合龙施工法( _' `" _/ R4 c5 E% a, G. g! g
& H$ f3 M# N2 P7 Z# {. J
大桥小里程交界边墩高达50m,采用传统的满堂支架法合龙不合适;而采用不对称悬灌的临时吊篮法又存在施工风险较高,工期较长、工程措施费用较高等问题。" z- |6 {! C1 j8 }1 Z+ G" M, ^
大桥利用波形钢腹板自身具有一定刚度的特点,将波形钢腹板改造成临时吊梁,利用其自承重完成边跨现浇段的施工,解决了上述问题。3 P8 G( Q2 N6 \3 T" s* g9 u% W
采用此方案施工前,需要对波形钢腹板进行局部改造:, N7 A) b+ X/ C
(1)需要对该部位的波形钢腹板适当加厚,以提高施工期间结构抗剪的安全储备。
0 I9 r$ k9 D7 C3 a* g( Z(2)需要对该部位上下翼缘钢板尺寸适当加大,以满足施工期间结构抗弯的要求。
3 D, Y- N0 R1 x# ~(3)需要在两道波形钢腹板之间安装斜撑,以满足施工期间结构稳定性的要求。: F- \7 B* [8 C# p
高地震烈度区的高墩、大跨度桥梁采用波形钢腹板箱梁时,与混凝土箱梁相比,可降低结构自重,改善抗震性能,大幅减小基础工程量,具有显著的经济优势;通过设置简易横隔板可提高梁体的抗扭刚度和抗畸变能力,减小梁体的扭转正应力和畸变正应力;通过设置耗能系梁可调节墩身内力的分布,在地震作用下通过牺牲次要构件来保护主要受力构件;当边墩较高时,可将波形钢腹板改造成临时吊梁完成边跨合龙,降低工程费用,加快施工进度。

点评

上部结构重量相差并不是特别大,为何承台及桩基工程量对比如此悬殊,两者是否为同等条件?现有波折腹板梁造价低主要是在此基础上得到,是否具有代表性?  发表于 2015-11-16 14:13
建议注明作者:陈克坚 周晓夫 宋随弟 出处:桥梁杂志公众号 另外还有一篇“兰州小砂沟大桥设计” 《桥梁建设》 2014.vol44.第3期(总第226期) p98. 可以参考  发表于 2015-11-6 13:53
举报 回复
damaxia 发表于 2015-11-4 12:35:57
梁桥经济型都不好  拱桥上还应用?
举报 回复
bristu 发表于 2015-11-3 17:03:52

波形钢腹板与混凝土顶底板的连接方式

本帖最后由 bristu 于 2015-11-3 17:06 编辑 % \. @0 h5 o+ _0 b1 F4 [
! h6 R6 \5 X1 n! N+ E* V6 M1 p
分享一些资料供大家参考:
4 x* x: o6 a6 V  T9 T% O

' w' ?% Q/ d1 t* N- Y3 G 8(1).jpg
1 ]  r# v; C7 v" ]图1 波形钢腹板与混凝土顶底板的连接方式
* g9 M' W# g  \( _
        归纳日本波形钢腹板PC桥应用了图1中所示的6种剪力键,早期的日本波形钢腹板PC桥多应用角钢剪力键,近期则多应用PBL剪力键。1995年建成的本谷桥(40m+97.7m+44m),波形钢腹板与预应力混凝土的连接选用了埋入式剪力键,其结构、经济效果都很好,此后则应用不多。我国山东德商高速公路鄄城黄河桥70m+11×120m+70m跨波形钢腹板PC桥主桥波形钢腹板与混凝土顶底板连接亦采用埋入式剪力键,经济效益很好,且无顶底板与腹板间焊缝疲劳问题,然续用者不多。* k- T- x# U% I. C3 i
       河南郑州桃花峪黄河桥跨北大堤桥75m+135m+75m跨波形钢腹板PC桥中,因底板混凝土浇筑的困难,将原设计S-PBL加栓钉的连接改用了角钢剪力键连接并做了较细致的剪力键试验。理论与试验均表明角钢剪力键受力明确、可靠。施工中混凝土易保证密实,因计算缘故大跨径波形钢腹板PC桥选择角钢剪力键者在逐渐增多。+ ]% ^. r# }, ?
       栓钉连接是我国钢混组合结构最常用的剪力键连接形式,它有三个优点:①便宜②易施工③适于多向受剪。然因属弹性连接将其与有折皱效应的波形钢腹板联用似存有疑虑,阻碍了它在波形钢腹板PC桥中的应用。郑州朝阳沟水库波形钢腹板PC部分斜拉桥(58m+118m+188m+108m)设计中,将波形钢腹板与预应力混凝土顶底板的连接全采用了栓钉连接,应属一个很好的选择。
6 x6 _6 X+ \& H4 p+ a! M6 ]8 b波形钢腹板与预应力混凝土顶底板的剪力连接关涉波形钢腹板PC桥设计的经济性,应慎重选择。如欲于波形钢腹板PC桥的设计、施工中利用由翼缘板和波形钢腹板构成的工字钢承重,则宜考虑角钢、栓钉等没有翼缘板的连接,如不考虑施工中利用波形钢腹板承重,则埋入式连接时最经济的选择。; T$ @* B3 ~( ^. n/ X% [8 t
9(1).jpg ) m4 P; z8 l( q  q& x
图2 Rap con/RW工法
! I" v; L) x) e3 {
        波形钢腹板与其上下连接用翼缘板在施工安装阶段是可承重的,利用其作施工承重可形成悬臂施工中的Rap con/RW工法,如图2所示。我国四川叙古高速公路头道河大桥(72m+130m+72m)波形钢腹板PC桥正拟以此方案实施。带翼缘板的波形钢腹板亦可作为顶推施工中的导梁。我国郑州市常庄干渠桥(9×50m+9×50m+40m)正按此施工,其规模已超过了日本的岛崎川桥。广州市鱼窝头立交匝道桥、辽宁藩阳宽甸桥均借助波形钢腹板工字梁实现了城市高架桥的无支架施工。我国波形钢腹板PC桥的发展在这方面的探索毫不逊色。
  `, b9 Z  V9 h: |% `* G5 [+ e- [
7 T5 R+ J' ?; b& S3 A9 b2 Y! J

评分

参与人数 1堡币 +5 收起 理由
redflag + 5 赞一个!

查看全部评分

举报 回复
您需要登录后才可以回帖 登录 | 注册

本版积分规则

 
 
  • QQ:56984982
  • 点击这里给我发消息
    电话:13527553862
    站务咨询群桥头堡站务咨询桥梁专业交流群:
    中国桥梁专业领袖群
    工作时间
    8:00-18:00