应力集中是指接头局部区域的最大应力值比平均应力值高的现象。
对于由脆性材料制成的构件,应力集中现象将一直保持到最大局部应力到达强度极限之前。因此,在设计脆性材料构件时,应考虑应力集中的影响。
对于由塑性材料制成的构件,应力集中对其在静载荷作用下的强度则几乎无影响。所以,在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响。
弹性力学中的一类问题,
应力在固体局部区域内显著增高的现象。多出现于尖角、孔洞、缺口、沟槽以及有刚性约束处及其邻域。应力集中会引起脆性材料断裂;使物体产生疲劳裂纹。在应力集中区域,应力的最大值(峰值应力)与物体的几何形状和加载方式等因素有关。局部增高的应力值随与峰值应力点的间距的增加而迅速衰减。由于峰值应力往往超过屈服极限(见
材料力学性能)而造成应力的重新分配,所以,实际的峰值应力常低于按弹性力学计算出的理论峰值应力。反映局部应力增高程度的参数称为应力集中系数
k,它是峰值应力与不考虑应力集中时的应力的比值,恒大于1且与载荷大小无关。
1898年德国的G.基尔施首先得出圆孔附近应力集中的结果 。1909年俄国的G.V.科洛索夫求出
椭圆孔附近应力集中的公式。20世纪20年代末 ,苏联的N.I.穆斯赫利什维利等人把复变函数引入弹性力学,用保角变换把一个不规则分段光滑的
曲线变换到单位圆上,导出复变函数的应力表达式及其边界条件,进而获得一批应力集中的精确解。各种实验手段的发展也很快,如电测法、光弹性法、散斑干涉法、云纹法等实验手段(见
实验应力分析)均可测出物体的应力集中。随着科技的进步,计算机和
有限元法以及
边界元法的迅速发展,为寻找应力集中的数值解开辟了新途径。
为避免应力集中造成构件破坏,可采取消除尖角、改善构件外形、局部加强孔边以及提高材料表面光洁度等措施;另外还可对材料表面作喷丸、辊压、氧化等处理,以提高材料表面的疲劳强度。